首页>检索页>当前

清华大学交叉团队在Science发布中国AI光芯片“太极”

发布时间:2024-04-15 作者:董鲁皖龙 来源:中国教育新闻网

中国教育报-中国教育新闻网讯(记者 董鲁皖龙)随着各类大模型和深度神经网络涌现,如何制造出满足人工智能发展、兼具大算力和高能效的下一代AI芯片已成为国际前沿热点。清华大学电子工程系方璐副教授课题组、自动化系戴琼海院士课题组摒弃传统电子深度计算范式,另辟蹊径,首创分布式广度智能光计算架构研制全球首款大规模干涉衍射异构集成芯片“太极”(Taichi),实现160 TOPS/W的通用智能计算。该研究成果于北京时间4月12日以《大规模光芯片“太极”赋能160 TOPS/W通用人工智能》为题,发表在最新一期的《科学》(Science)上。

光计算,顾名思义是将计算载体从电变为光,利用光在芯片中的传播进行计算,以其超高的并行度和速度,被认为是未来颠覆性计算架构的最有力竞争方案之一。然而其计算任务局限于简单的字符分类、基本的图像处理等。其痛点是光的计算优势被困在了不适合的电架构中,计算规模受限,无法支撑亟需高算力与高能效的复杂大模型智能计算。

直面科研领域痛点问题,帮助光计算“挣脱”算力瓶颈,另辟蹊径,“从0到1”重新设计适合光计算的新架构,是这个清华团队迈出的关键一步。方璐却将这次科研历程比拟为一场浪漫的“双向奔赴”:从算法架构上自顶向下探索,在硬件芯片设计上自底向上推演。

相异于电子神经网络依赖网络深度以实现复杂的计算与功能,“太极”光芯片架构源自光计算独特的“全连接”与“高并行”属性,化深度计算为分布式广度计算,为实现规模易扩展、计算高并行、系统强鲁棒的通用智能光计算探索了新路径。

据论文第一作者、电子系博士生徐智昊介绍,在“太极”架构中,自顶向下的编码拆分—解码重构机制,将复杂智能任务化繁为简,拆分为多通道高并行的子任务,构建的分布式“大感受野”浅层光网络对子任务分而治之,突破物理模拟器件多层深度级联的固有计算误差。

团队以周易典籍“易有太极,是生两仪”为启发,建立干涉—衍射联合传播模型,融合衍射光计算大规模并行优势与干涉光计算灵活重构特性,将衍射编解码与干涉特征计算进行部分/整体重构复用,以时序复用突破通量瓶颈,自底向上支撑分布式广度光计算架构,为片上大规模通用智能光计算探索了新路径。

据论文报道:“太极”光芯片具备879 T MACS/mm²的面积效率与160 TOPS/W的能量效率,首次赋能光计算实现自然场景千类对象识别、跨模态内容生成等人工智能复杂任务。“太极”光芯片有望为大模型训练推理、通用人工智能、自主智能无人系统提供算力支撑。

该课题受到科技部2030“新一代人工智能”重大项目、国家自然科学基金委杰青项目、基础科学中心项目,清华大学—之江实验室联合研究中心支持。

0 0 0 0
分享到:

相关阅读

最新发布
热门标签
点击排行
热点推荐

工信部备案号:京ICP备05071141号

互联网新闻信息服务许可证 10120170024

中国教育报刊社主办 中国教育新闻网版权所有,未经书面授权禁止下载使用

Copyright@2000-2022 www.jyb.cn All Rights Reserved.

京公网安备 11010802025840号